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ATTWATION OF SOUND IN SOFC WALLED CIRCULAR DUCTS 

Edward J. Rice 
L e w i s  Research Center 
National Aeronautics and Space Administration 
Cleveland, Ohio 

SUMMARY 

A theory is  presented which appears capable of predicting t h e  

~ 

a t t e m a t i o n  of broad-band sound i n  s o f t  walled [low acoust ical  impe- 
dance) c i rcu lar  ducts. 

The a x i a l l y  symmetric separable solut ions t o  t h e  l i n e a r  wave 
equation j n  c ly indr jca l  coordinates were obtained. It was assumed 
that the steady ve loc i t i e s  and pressure f luc tua t ions  were small. The % 

d first t en  cha rac t e r i s t i c  function solut ions were f i t  t o  form a t r ave l -  
l ing plane pressure wave a t  t he  l ined duct entrance by means of a I4 

Fourier-Bessel s e r i e s  expansion. 
due t o  the  f i n i t e  w a l l  impedance boundary condition. 

f o r  hard w a l l s ,  shows a strong dependence of sound at tenuat ion on 
frequency. 
dtameter t o  sound wavelength. 

ax i s  occurs. 
w a l l ,  where t h e  energy must be absorbed, t h e  pressure osc i l l a t ions  may 
be  small. 

The theory w a s  used t o  calculate  t h e  noise reduction obtained 
with a perforated p l a t e  l i n e r  on a 5-65 engine in l e t .  The l i n e r  de- 
s ign w a s  based upon an approximate theory v a l i d  f o r  very hard w a l l s .  
The present theory showed excel lent  agreement w i t h  experimental 
measurements and why t h e  design based on approximate theory fa i led t o  
provide high noise reduction. 

The eigenvalues are complex numbers 

The present theory, i n  contrast  t o  the approximate theory va l id  

This dependence occurs through t h e  r a t i o  of the duct 

A t  high frequencies focusing of t h e  sound wave toward the  duct 
The acoustic energy can remain high, but  a t  t h e  outs ide 

SYMBOLS 

A area, f t 2  

constant (see eq. (5) and (13)) Bj 

cP 

C speed of sound, f t / s e c  

spec i f i c  heat a t  constant pressure, Btu/lb,/OR 

D duct diameter, f t  

D/h duct diameter t o  wavelength r a t i o  (see 7 below) 

damax maximum possible sound power at tenuat ion f o r  a given 7 

E acoustic energy, f t  lbf/sec 

and L/D, decibels 

TM X-52442 



2 

Ejk 

f 

L 

P" 

P 

j 
R 

63 

r 

rW 

T 

t 

V 

j 
V 

X 

Z 

"j 

5 

t7 

J e 

h 

P 

PO 

acoustic energy contribution of j pressure and k a x i a l  
ve loc i ty  modes, ft lbf/sec 

sound frequency, Hz 

Bessel function of the  first kind, of order 

duct length t o  diameter r a t i o  

n 

duct length, ft 

j mode of acoustic pressure, ps i  

complex conjugate of P, ps i  

acoust ic  pressure, 

modulus of .  j complex eigenvalue 

gas constant, f t  1 b f / l b m / O R  

r a d i a l  Space coordinate, f t  

duct radius,  f t  

temperature, OR 

time, sec 

acoustic velocity,  

j mode of  acoustic velocity,  f t / s ec  

a x i a l  space coordinate, ft 

l i n e r  acoust ic  impedance, lbm/ft2/sec 

complex eigenvalue of j radial cha rac t e r i s t i c  so lu t ion  
(aj = Rjelej)  

dimensionless l i n e r  acoust ical  impedance (Z/p,C) 

Morse's frequency parameter, duct diameter i n  wavelengths 
rwcu/xC o r  D/h 

argument of j complex eigenvalue 

sound wavelength, f t  

density, Ibm/ft3 

average density, lb,/ft3 
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(Jj,Tj 

@ 

Morse’s transmission parameters (ref. 2 )  

dimensionless acous t ica l  resistance,  6?,e (0 
X 

cc, c i r cu la r  frequency, rad/sec 

dimensionless acoust ical  reactance, dm ( 5 )  

( ) *  complex conjugate 

1. IRTTRODUCTION 

The solut ion t o  the  l inear ized  acoust ical  wave equation i n  circu- 
lar  ducts is w e l l  known and the  method of applying boundary conditions 
t o  t h e  cha rac t e r i s t i c  solut ions t o  represent a complicated waveform 
enter ing a s o f t  walled duct is  thoroughly established, (refs. 1 and 2 ) .  
Due t o  computational d i f f i c u l t i e s ,  an approximate solut ion t o  t h e  duct 
w a l l  impedance equation fo r  the first mode of vibrat ion has been made 
i n  the past, ( r e f s .  1, 3, and 4). The r e su l t i ng  solut ion is an ap- 
proximation t o  the transmission of a plane wave i n  a c i r cu la r  duct 
with a near ly  hard w a l l .  

of t h e  l inear ized  wave equation w i t h  associated boundary conditions 
such t h a t  t he  solut ion is va l id  f o r  ducts with very soft w a l l s  (i .e.,  
acous t ica l ly  l ined  ducts).  
plane wave enter ing t h e  duct bu t  could be applied t o  any axisymmetric 
wave form. 

The theory w a s  applied t o  broad-band or random noise i n  the  f o l -  
lowing way. 
noise was  assumed t o  en ter  t h e  duct a s  a plane t rave l ing  pressure 
wave. 
frequency and compared t o  t h a t  obtained experimentally i n  t h e  i n l e t  of 
a 5-65 turboje t  engine. The comparison between experimental and 
t h e o r e t i c a l  sound power at tenuat ion w a s  excellent.  

The purpose of t h i s  paper i s  t o  invest igate  the  complete solut ion 

The solution is special ized t o  t h a t  of a 

A t  each frequency i n  the broad-band spectrum t h e  random 

The at tenuat ion of  t h i s  pressure wave w a s  calculated a t  each 

2. THEORY . -  

Differen t ia l  Equation and Solutions. The equations of motion 
fo r  the a i r  i n  t h e  duct are: 

g = - v * ( p v )  

PCP E = 

P = MT 

1 cont. 

mom. 

energy 

state 

Viscous and heat t ransfer  terms have been neglected. 
i n  the duct is assumed t o  behave as an idea l  gas. 
that t h e  pressure perturbations are small compared t o  t h e  average 

The air 
If it is assumed 
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pressure and the steady ve loc i t i e s  are negligible,  equation (1) re- 
duces t o :  

Equations ( 2 )  can be combined t o  obtain t h e  wave equation, 

and i f  t h e  time dependence i n  pressure is of t he  form eiccrt then 

The solut ion of equation (3) i n  cy l indr ica l  coordinates with 
axial symmetry is: 

The subscr ipt  j is  used i n  equation (5) s ince there are an 

The radial eigenvalues 
i n f i n i t e  number of solut ions of t h i s  form. 

ary condition a t  t h e  w a l l  
must be determined from t h e  bound- 

“j (r  = rw) and can be expressed as: 
i e j  

aj = Rj e 

The constants Bj  qust  be determined from the  i n i t i a l  pressure 

It should be noted t h a t  the argument of t h e  Bessel f’unctionand 
The methods used 

wave a t  t h e  duct entrance 

thus  t h e  Bessel f’unction itself is a complex number. 
for calculat ion of the  complex Bessel f’unc’t‘ionare presented i n  the 
appendix. 

(X = 0 ) .  

Application of Boundary Conditions. Each solut ion (eq. (5 ) )  must 
s a t i s f y  the  radial impedance condition a t  t h e  outer w a l l :  

Equation ( 4 )  is  used t o  obtain 
can then be expressed as: 

the r a d i a l  ve loc i ty  ( v  ). Equation ( 7 )  
r j  

( 8 )  
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where 

D 2rwf v = x = c  (9 )  

The radial eigenvalues uj  must be determined from equation (8) and 
are a function of c/q only. The methods used t o  determine t h e  uj 
a r e  presented i n  the  appendix. 

t h e  pressure can be expressed as the  summation of individual solutions.  
The pressure i n  t h e  l ined  duct can then be expressed i n  a Fourier- 
Bessel series of solut ions of t he  form of equation (5) :  

Since t h e  d i f f e r e n t i a l  equation i n  pressure (eq. (3))  is l inear ,  

For an i n i t i a l  plane t rave l ing  pressure wave the  pressure must be: 

P = exp(iwt), (x = 0)  ($1) 

Combining equations (10) and (ll), the  following equation fo r  t h e  
constants B results: J 

The radial cha rac t e r i s t i c  functions form an orthogonal set  
between r = 0 ,  and T = rw (ref. 5). The Bj  can thus be deter- 
mined i n  equat’ion (E’), and t h e  result is: 

With equation (13) subs t i tu ted  i n  equation ( l o ) ,  t h e  pressure any- 
where i n  t h e  l ined  duct is determined. 

satisfy the  radial impedance boundary conditions since: 
The complete solut ions f o r  t he  pressure and r a d i a l  ve loc i ty  a l s o  

Axial Acoustic mergy. The a x i a l  i n t ens i ty  can be expressed 
as (ref. 6 ) ~ :  
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where 

(15) I = 1/2 6?,e 

Axial acoustic energy can thus.:be determined from: 

E =  Ejk 
j ,k 

The subscr ipts  j k  s ign i fy  t h e  in te rac t ion  of t h e  j pressure 
mode with the  k axial ve loc i ty  mode. Equation (16a) must be used 
s ince : 

Ejk # ( j  # k) (17 )  

I n  t h e  evaluation of t h e  in t eg ra l  of equation (16b) 

6 
w a s  used. 

gonal i ty  of Character is t ics  Functions" given i n  reference 5. 
t i o n  (8) and 

Equation (18) w a s  derived from t h e  equation f o r  t he  "Ortho- 
Equa- 

[JO(ajO* = Jo(aT) ( 1 9 )  

were a l s o  used i n  the  der ivat ion of equation (18). 
Equations ( 4 ) ,  ( 5 ) ,  ( 8 ) ,  (13), (16b), and (18) y ie ld :  

where 
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2 

Qk = (%) - 1 

and Q* is determined from equation (21) by replacing k by j and 
taking the  complex conjugate. 

s t i t u t i n g  equation (5) in to  equation (3). The real and imaginary 
p a r t s  of t he  r e s u l t i n g  equation can be solved f o r  
r e s u l t  is : 

J 

The damping and transmission parameters can be  determined by sub- 

uj and z The J. 

(22)  

where (+) is used f o r  Q .  and ( - )  f o r  z . From equation (6 )  it is 
seen t h a t  R j  and e j  i r e  t he  modulus add argumentof t h e  complex 
eigenvalue a . 

The sound. power at tenuat ion can be calculated from 

where EeXmt and Eentran e a r e  calculated from equation (16a) using 
equations t20), (21), and TZ2). Before equations ( Z O ) ,  (21), and (22) 
can be  evaluated, t he  complex eigenvalues olj must be calculated 
from t h e  multiple solut ions of equation (8). The method used t o  eval- 
ua te  the  a is  outlined i n  the  appendix. 

f’unction only of c/v. Equation (13) shows the  B t o  be a function 
of [ /T  and CL. or thus only of (/T. The modal content of t h e  
plane pressure k v e  a t  t h e  l ined  duct entrance (X = 0) i s  thus a 
funct ion only of ( /v  according t o  equation (5). The damping and 
transmission parameters u j  and T j  a r e  seen t o  be a function of 
( / v  through R j  and ej. But, i n  addition, aj and T? contain 

t h e  term expressible as :  

From e&.mtion (8) t h e  r a d i a l  eigenvalues a r e  seen t o  be a 

j 

without ( exp l i c i t l y .  The exponential of equation 20) contains 

(T) = $ = 2 4 3  
X=L 

where L is the  length of l i ned  duct and D is t h e  diameter. 
The var iab les  on which the  sound at tenuat ion depends a r e  thus 

C/v, 7, and L/D or  a l t e rna te ly  C, 7, and L/D. 
Several pressure and ve loc i ty  modes must be considered f o r  soft 

walled ducts. The at tenuat ion equation (eq. ( 2 3 ) )  thus contains the  
Logarithm of the  r a t i o  of two complicated summations. 
complication no simplifying truncation of the theory y ie ld ing  a simple 

Due t o  t h i s  
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equation for  a t tenuat ion has been obtained. 

3. RESULTS AND DISCUSSION 

The numerical resul ts  which follow were calculated on an IBM 7094 
computer. The first t e n  r a d i a l  modes were used. 

Attenuation Contours and Maximum Attenuation. The sound power 
at tenuat ion depends upon four variables:  the w a l l  r es i s tance  and 
reactance, the duct diameter t o  wave length r a t i o  ( q ) ,  and t h e  duct 
length t o  diameter r a t i o  (L/D). Figure 1 presents constant attenu- 
a t ion  contours as a function of w a l l  res is tance and reactance. The 
other variables are fixed a t  7 = 1 and L/D = 3. Also p lo t ted  i n  
figure 1 are t h e  r e s u l t s  of reference 1 which can be expressed as: 

dB = -17.36(L/D) a 
(02 + X2) 

The following differences between t h e  approximate theory of 
reference 1 and the  more complete theory of t h i s  paper can be noted. 

For a given w a l l  r es i s tance  maximum at tenuat ion occurs a t  nega- 
t ive w a l l  reactance ra ther  than a t  the w a l l  tune point ( X  = 0) .  

The present theory predicts  an absolute m a x i m u m  sound attenu- 
a t i o n  at  f ixed values of q and L/D. Decreasing res i s tance  u l t i -  
mately reduces at tenuat ion f o r  any value of reactance. 
mate theory predicts  l o c a l  m a x i m a ,  but f o r  t h e  at tenuat ion 
can.be increased inde f in i t e ly  by reducing resis tance.  The present 
theory agrees with the  approximate theory f o r  large w a l l  impedance 

It should be noted t h a t  f igure  1 is not a general  a t tenuat ion 

The approxi- 
X = 0 

( C/7) 

p l o t  which can be used f o r  l i n e r  design. 
a duct diameter t o  wavelength r a t i o  (7 )  of one and 
o ther  q and L/D t h e  impedance for  m a x i m u m  a t tenuat ion w i l l  move 
i n  t h e  impedance plane, and t h e  peak at tenuat ion w i l l  change. 

uat ion as a function of duct diameter i n  wavelengths ( 7 ) .  
curves of constant L/D a r e  shown. The maximum at tenuat ion 
(-dBmax) has been normalized by dividing it by t h e  value of 
each curve. For very 
small 

ing Near q(a 1 ? 72). For la rge  q m a x i m u m  a t tenuat ion is  approximately 
inversely proportional t o  q. 

For q > 1 t h e  maximum attenuation is  approximately proportional 
t o  L/D. An extrapolat ion of t he  l a rge r  L/D curves t o  7 < 1 indi- 
ca t e s  that f o r  small q t h e  attenuation per unit L/D decreases 
wi th  L/D. 

plane is shown i n  figure 3. Several l i n e s  of constant q and L/D 
are presented. I n  general  t he  locus f o r  constant L/D shows t h a t  
f o r  increasing q ( o r  f )  t h e  impedance f o r  maximum at tenuat ion moves 
t o  l a rge r  w a l l  r es i s tance  and more negative reactance. 

Figure 1 i s  valid only f o r  
L/D = 3. For 

Figure 2 presents t h e  value of the absolute maximum sound a t ten-  
Several 

L/D f o r  
The following should be noted from figure 2. 

7 ( 7  ~0.1) t h e  maximum attenuation is  weakly dependent upon 
the  maximum attenuation fa l ls  rap id ly  with increas- = 1 

The locus of t h e  maximum sound at tenuat ion i n  t h e  w a l l  impedance 

The exception 
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i s ' t h e  inf lec t ion  found i n  each constant L/D curve. The advent of 
t h i s  inf lect ion occurs a t  roughly 

quency (see f ig .  7) .  Unfortunately the reactance a l s o  increases w i t h  
frequency. This t rend of reactance with frequency is inverse t o  t h a t  
required fo r  maxim attenuation. 
obtained only over a limited frequency range f o r  a given wal l t reat-  
ment . 

7 = L/D. 
The res i s tance  of t yp ica l  l i n ing  materials increases with fre- 

Large sound at tenuat ion can thus be 

Sound Power Attenuation Contour Breadth i n  Wall Impedance Plane. 
S t ruc tura l  considerations may preclude t h e  use of a l i n e r  material with 
optimum w a l l  impedance. The question then arises. How far removed 
from t h e  optimum w a l l  impedance can the l i n e r  impedance be and s t i l l  
result i n  acceptable sound attenuation? 
t o  p a r t i a l l y  answer t h i s  question. 

Figure 4(a)  represents v e r t i c a l  cuts  through t h e  m a x i m u m  attenu- 
a t ion  points of several  contour p lo ts  l i k e  figure 1. 
an For a fixed diam- 
eter t o  wavelength r a t i o  (7) and for  the w a l l  reactance of maximum 
attenuation, sound at tenuat ions f o r  several  res is tances  on both sides 
of t h e  maximum at tenuat ion were calculated. Plots  of a t tenuat ion 
versus resis tance were made. These plots  provided the  resis tances  f o r  
say 5, 10, 20, e tc .  dB sound attenuations. These resis tances  were 
then p lo t ted  on figure 4(a)  f o r  t he  value of 7 used. A range of 7 
w a s  covered with the  unique value of reactance f o r  each 
vides m a x i m  attenuation. 
bu t  with t h e  ro l e s  of res is tance and reactance interchanged. 
ure  4(b) thus represents horizontal  cuts  through t h e  maximum attenu- 
a t ion  points of several  contour plots  l i k e  figure 1. 
and (b) a r e  analogous t o  4(a)  and (b)  but with 

on t h e  breadth of t he  sound at tenuat ion con- 
tours  is c l ea r  from figures 4 and 5, bu t  numerical examples w i l l  
f u r t h e r  illustrate the  e f fec t .  A t  the  l a rges t  value of 7 f o r  which 
20 dB reduction can be obtained ( q  = 1.13 for L/D = 1 and 
7 = 3.85 
served, For L/D = 1 t h e  intervals  are 0.2 < CP < 1.6 and 
-1.41 < X < -0.15. L/D = 5 they are 1.28-< CP-C 8.9 and 
-6.5 <-X <-+O. 5. L/D 
by a Fact';;r of 5) are thus 5.4 f o r  res is tance and 5.6 f o r  reactance. 
The contour breadth is thus seen t o  increase approximately as L/D. 

The benef i t s  possible from using l ined  pa r t i t i ons  i n  the  duct 
are nuw obvious. Increasing L/D by a f ac to r  of 5 reduces 7 by 
a f a c t o r  of 5 f o r  t h e  same L. Reducing 7 increases the m a x i m u m  
possible  sound at tenuat ion (f ig .  2) .  An increase i n  L/D broadens 
t h e  impedance range over which a given sound at tenuat ion can be 
obtained. This i s  caused by the  increased l i n e r  area as w e l l  as t h e  
reduction i n  7. 

Figures 4 and 5 are presented 

Figure 4(a) ,  f o r  
L/D = 1, was constructed i n  t h e  follawing way. 

7 which pro- 
Figure 4(b) w a s  generated l i k e  f igure  4(a) 

Fig- 

Figures 5(a)  
L/D = 5. 

The ef fec t  of L/D 

f o r  L/D = 5) t h e  breadth of t h e  10 dB contours were ob- 

For 
The breadth increases (due to-an -increase i n  

Beaming of Pressure Wave a t  High Frequency. Radial sound pres- 
sure prof i les  f o r  7 = 0.1, 1, and 10 f o r  several  values of L/D are 
shown i n  figure 6. 
zero  f o r  a l l  curves of figure 6. 

A t  t h e  l i ned  duct entrance (L/D = 0)  t h e  pressure wave is a 
plane traveling wave of u n i t  amplitude. 

The w a l l  res is tance and reactance were 1.6 and 

!Phis implies a uniform 
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amplitude and phase a t  any radius. A t  L/D = 3 t h e  phase change 
from r = 0 t o  0.9 rw is  -4.6, -0.8, and +30.5 degrees f o r  7 = 0.1, 
1, and 10 respectively.  For large 7 t h e  pressure near t h e  w a l l  is  
seen t o  lead t h a t  a t  t he  duct axis. 
and the  r a d i a l  pressure prof i les  of  f igure 6 t h e  following is apparent. 
For ‘1 = 0 .1  and 1 the  wave i s  attenuated and progresses down the  duct 
as near ly  a plane wave. For 7 = 10 the  pressure wave is beamed to -  
ward the  duct axis.  For L/C = 3 and 5 the  pressure osc i l l a t ions  a t  
the  duct ax i s  are more than twice tha t  of the  o r ig ina l  plane wave 
(a t  L/D = 0) .  A t  t he  duct w a l l  t he  pressure osc i l l a t ions  have been 
reduced by a f ac to r  of about 10 ( o r  20 dB). The acoust ic  power has 
been red is t r ibu ted  toward the  duct axis. A t  t h e  w a l l  where it must 
be absorbed, t he  sound in t ens i ty  has been reduced. Thus, sound power 
at tenuat ion is  small as can be ver i f ied  from t h e  t a b l e  of figure 6. 

From these phase relat ionships  

Comparison of Theory and Experimental Results. In  order t o  cal-  
cu la te  sound at tenuat ion i n  a duct, the res i s tance  and reactance of 
t h e  l i n i n g  mater ia l  must be known. The res i s tance  and reactance fre- 
quency dependence (calculated by method of ref. 7)  used i n  t h e  follow- 
ing calculat ions is presented i n  figure 7. Several  res i s tance  curves 
are shown since l i n e r  res is tance varies with sound pressure l e v e l  i n  
the  duct. The following data  were used i n  t h e  impedance calculations:  

1. Steady flow ve loc i ty  i n  duct, 350 fps .  
2. Liner open area  r a t io ,  0.08 
3. Liner face p l a t e  thickness, 0.020 inches 
4. Liner hole diameter, 0.050 inches 
5. Liner back cavi ty  depth, 1 inch 

Also included i n  figure 7 a r e  two extra sca les  ( 7 1  and 75) r e l a t i n g  
?(D/-A) t o  frequency f o r  L/D = 1 and 5 where L = 30 inches. 

l i ned  i n l e t  on a 5-65 turboje t  engine. The l ined  duct inside diam- 
eter ( D )  w a s  30 inches, and the  l ined length (L)  w a s  30 inches ( thus 
L/D = 1). 
reference 9. The experimental sound power at tenuat ion obtained with 
t h e  l ined  i n l e t  (propert ies  as i n  f igure 7) are shown by the  data  
points  i n  f igu re  8(b) .  

l a t ed  f o r  several  sound pressure levels  and a range of  Trequencies. 
The experimental apparatus dimensions were used. 
shown i n  f igu re  8(a). 
shown by the  so l id  curve i n  f igure  8(b) .  
using the  experimental sound pressure l eve l  a t  severa l  frequencies 
and in te rpola t ing  i n  f igure  8(a).  
seen t o  be excel lent  and within the experimental e r r o r  (2dB). 

The dashed l i n e  of f igure 8(b) shows t h e  low frequency end of t h e  
at tenuat ion curve predicted by the approximate theory of reference 1 
(see eq. (25 )  t h i s  paper). This curve continues r i s i n g  with frequency 
and would predict  about 18 dB sound power reduction a t  the  l i nea r  tune 
point (4175 Hz). 
ment a l l y  . 

The reason for  t h e  failure of t h i s  l ined  duct design t o  provide 
h igh  sound at tenuat ion is  seen i n  f igures  4(a) and ( b ) .  
level res i s tance  and the reactance are p lo t ted  as dashed curves with 
frequencies noted on t h e  curves. The l i n e r  res i s tance  and reactance 

Experimental sound power attenuation data w a s  obtained with a 

The evaluation method of sound power leve ls  i s  found i n  

Sound power attenuations (using the  present theory) were calcu- 

The r e s u l t s  are 
The theore t ica l  sound power at tenuat ion is 

This curve w a s  obtained by 

The agreement with experiment is  

N o  reduction a t  t h i s  frequency w a s  observed experi- 

The 130 dB 
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diverge fur ther  from the  region of high damping with increasing fre- 
quency. 
low at tenuat ion region. 

is  shown i q  f igure  9. The same l i n e r  material as i n  f igure  7 was 
used. The l ined  duct length remains a t  30 inches, but L/D was 
changed t o  5 (say by l ined  pa r t i t i ons ) .  
uation was calculated f o r  three sound pressure levels.  High sound 
at tenuat ion is seen t o  be possible over a wide frequency range. 
comparison t h e  150 dB l eve l  sound attenuation curve of figure 8(a) has 
been rep lo t ted  i n  figwe 9. A change from L/D = 1 t o  5 is seen 
t o  increase the frequency fo r  maximan a t tenuat ion from 1000 t o  
2300 hertz  and t o  increase the  peak from 5.3 t o  51 dB. 

plo t ted  on figure 5(a) and (I). A comparison with figure 4(a) and (b)  
shows how a change only in  L/D from 1 t o  5 has moved the  high a t ten-  
uation impedance region. 

Above 1,000 her tz  both resis tance and reactance are i n  t h e  

An example of how a geQmetry change can e f f e c t  sound at tenuat ion 

The theo re t i ca l  sound atten- 

For 

The 133 dB l e v e l  res is tance and the  reactance from figure 7 are 

4. CONCLUDING FXMARKS 

Comments on Duct Parti t ioning. Circular ducts have been par- 
tioned by the  addi t ion of radial l ined sect ions ( s t ru t s )  and circum- 
f e r e n t i a l  l ined  sect ions ( r ings)  t o  increase the  l i n e r  area t o  duct 
area ra t io .  With the proper select ion of struts and r ings t h e  
smaller r e su l t i ng  tubes can be made near ly  square. 
mate so lu t ion  (ref. 1) fo r  rectangular cross sect ions shows t h a t  
equation (25 )  is valid for a square duct with very hard walls i f  
is  replaced by a s ide  o f t h e  square. Thus, i n  t he  l i m i t  of very hard 
w a l l s  t h e  sound at tenuat ion i n  c i rcu lar  and square ducts is t h e  same. 
For s o f t  w a l l s  t h e  analysis  of t h i s  paper should give a t  least qual- 
i t a t i v e l y  correct  results f o r  square ducts. 

Morse's approxi- 

D 

Comments on Liner Resistance and Sound Power Level. A s  t h e  in- 
i t i a l  plane pressure wave progresses down the duct it w i l l  be  a t t en -  
uated and possibly beamed toward the duct axis (for 
sound pressure level a t  the  l i n e r  and thus the  l i n e r  res is tance 
(fig. 7) decreases down the  duct. 
new determination f o r  t he  Bj  
along t h e  duct. A f t e r  the sound pressure l e v e l  a t  t h e  l i n e r  has drop- 
ped say 2 dB t h e  charac te r i s t ic  solutions could be re f i t t ed  t o  t h e  re- 
maining pressure wave (not necessarily a plane wave). 
t i o n  could be used f o r  a distance and then t h e  r e f i t t i n g  be repeated 
u n t i l  the  end of t h e  duct is reached. 

sound power l e v e l  a t  t h e  l i ne r ,  f o r  instance, could be used i n  an 
attempt t o  bracket t h e  exact solution. 

t a in ing  t h e  theo re t i ca l  curve ( s o l i d  curve) of figure 8(b).  

D/A > 1). The 

This e f f e c t  could be handled by a 
of equation (10) a t  several locat ions 

This new solu- 

Approximate solut ions could a l so  be divised. The extremes of t h e  

The i n i t i a l  (duct entrance) sound pressure level was used i n  ob- 

5. CONCLUSIONS 

A theory t h a t  describes t h e  propagation and at tenuat ion of an 
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i n i t i a l l y  plane t rave l ing  pressure $rave i n  a c i r cu la r  duct with an 
acous t ica l ly  s o f t  w a l l  has been presented. The first t en  character-  
i s t i c  function solut ions were used i n  a Fourier-Bessel s e r i e s  t o  f i t  
the  plane t r ave l ing  wave a t  the  l ined  duct entrance. The r e s u l t s  of 
the analysis  may be summarized as follows. 

1. For a duct diameter t o  wavelength r a t i o  greater  than one the  
i n i t i a l  plane wave was found t o  beam toward t h e  duct axis. This re -  
s u l t s  i n  a r ed i s t r ibu t ion  of the  sound power within the  duct. The 
sound pressure l e v e l  a t  t h e  w a l l  l i ne r ,  where acoust ic  energy must be 
absorbed, can be grea t ly  reduced, while the  sound power l e v e l  is  af- 
fected only s l i gh t ly .  

wel l  with experimental data. 
duct, l i ned  with a perforated p l a t e  material, mounted on the i n l e t  of 
a J-65 engine. The experimental suppressor w a s  designed on t h e  basis 
of an approximate theory va l id  f o r  hard w a l l s .  The r e s u l t s  of t he  
present ana lys i s  show t h e  reason t h a t  t he  suppressor design failed 
t o  provide high noise reduction. 

3. For a given duct length t o  diameter r a t i o  and duct diameter 
t o  wave length r a t i o  an absolute m a x i m  sound power at tenuat ion 
w a s  found i n  the  l i n e r  impedance plane. This maximum was always 
found t o  be a t  negative w a l l  reactance. With increasing duct diam- 
e t e r  t o  wavelength r a t i o  the maximum at tenuat ion point was found t o  
move t o  l a rge r  l i n e r  res i s tance  and more negative l i n e r  reactance. 
"he maximum sound power at tenuat ion was found t o  be nearly propor- 
t i o n a l  t o  and t o  have a strong frequency dependence through 
the  r a t i o  of duct diameter t o  wavelength. 

4. The region i n  the  w a l l  impedance plane over which a given 
sound power at tenuat ion can be obtained increases approximately i n  
proportion t o  L/D. 

2. The theo re t i ca l  sound power attenuation w a s  found t o  agree 
The data w a s  taken w i t h  a cy l indr ica l  

L/D 

6. APPENDIX 

Calculation of the Bessel Function with Complex Argument. The 
ca lcu la t ion  of the  Bessel function with complex argument was done i n  
a computer program subroutine. The following calculat ion methods 
were used. 

i t i o n  (ref.-5) of t he  Bessgl function was used as:  
If R < 10 or if R < (1 + (20/fl))n the  i n f i n i t e  s e r i e s  defin- 

2k+n 

k!(k + n)! 

or  

i e  Eos (2k  + n)e  + i sin(2k + n ) d  Jn(Re ) = k!(k + n)!  
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If R > 10 
expansion (ref. 

and R > (1 + (28/rc))n, t h e  following asymptotic 
5) was used: 

i8  Un(Re ) = 1 + 
( 2k) ! ( 8Reie) 2k 

k= l  

k-1 
(-1) s4k-3 

- f= (2k - 1) ( 8Rei8)2k I- 
Vn(Reie) = 

k=l  
and 

The series of equation (29) were terminated i n  two ways: when 
t h e  modulus of t he  kth .term of Un(Reie)  exceeded the  modulus of 
t h e  k t h  term of Vn[Rele)  o r  when t h e  modulus of t he  - k t h  term 
of e i t h e r  w a s  less than , 

Rapid convergence occurs i n  equation (26) fo r  R << n and i n  
equation (27)  when 
over wide ranges of R, 8,  and n. For large n the  dividing l i n e  
between the two methods is  R = (1 + (28/rc))n. If R < 10, equa- 
t i o n  (26) converges more rapidly f o r  any 

R >> n. Both equations (26) and ( 2 7 )  were t e s t ed  

n. 
Doiible precision ari thmetic was used i n  a l l  cases. 

Calculation of Complex Eigenvalues. The complex eigenvalues 
must be determined from the  solut ion of equation (8) (derived i n  
t h e  t e x t  and repeated here).  

i n J  (aj) -- Z A=* 
~ o c t l  tl ajJ1 aj 

where again : 

(6)  aj = R j e  i8  j 

The method of reference 4 was used i n  the  solut ion of equation (8) 
fo r  large w a l l  impedance. 
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Let 

and 

Using equation (6) ,  subs t i tu t ing  equation (30) in to  equation (8),  and 
then d i f f e ren t i a t ing  equation (8) with respect t o  E, there  results: 

dF 
d€ ( F  + E’) - = F 

Equation (31) i s  a f i rs t  order nonlinear d i f f e r e n t i a l  equation which 
can be solved f o r  F i n  an  i n f i n i t e  series solut ion i n  E. 

The boundary conditions which must be applied are: 
a t  E = O  

e .  J = o ( a l l  3 
and R j  is  the  Jth root  of J ( R  ) = 0 1 3  
or RJ = 0, 3.8317, 7.0156, e tc .  f o r  j = 1, 2, 3, etc.  

For small w a l l  impedance l e t  

g = l  
€ 

Subs t i tu t ion  of equation (33) i n t o  equation (31) yields:  

2 dF (1 + 5 F) - + F = 0 
a!. 

The boundary conditions are : 

a t  g = O  e j  = o ( a l l  3)  

and R j  is  the  Jth root of J o ( R . )  = 0 J 

( 33) 

(35) 

or R .  = 2.4048, 5.5201, 8.6437, etc.  f o r  j = 1, 2, 3, e tc .  

t h e  series solut ions of both equation (31) and equation (34) diverge 
(a t  least on t h e  computer using double precision arithmetic). 
region is  around the  branch l ine .  The branch l ine  is  defined here 
as t h e  curve i n  the  l i n e r  impedance plane 
so lu t ions  t o  equation (8) have the  same R but d i f f e ren t  8 ( R .  = Rk 
b u t  O j  # ek). The c r i t i c a l  values of R on the  branch l i n e  a r e  
3.1962, 6.3064, . . . or:  

$or every mode the re  is  a region i n  the  impedance plane where 

This 

on which two (O/q, X/q)  
J 

J 

Rj, c r i t  3x (36) 

I n  t h i s  c r i t i c a l  impedance region t h e  method of reference 8, f o r  
solving nonlinear equations, was applied d i r e c t l y  t o  equation (8) .  
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